Binding of Transducin to Light-Activated Rhodopsin Prevents Transducin Interaction with the Rod cGMP Phosphodiesterase γ-Subunit[†]

Nikolai O. Artemyev*

Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242

Received December 6, 1996; Revised Manuscript Received February 10, 1997[®]

ABSTRACT: In photoreceptor cells of vertebrates, the GTP-bound α-subunit of rod G-protein, transducin $(G_{t\alpha})$, interacts with the cGMP phosphodiesterase inhibitory γ -subunit $(P\gamma)$ to activate the effector enzyme. The GDP-bound $G_{t\alpha}$ can also bind the P γ subunit, albeit with a lower affinity than $G_{t\alpha}$ GTP. In this work, interactions between $G_{t\alpha}GDP$ and $P\gamma$ or $P\gamma$ -24-45Cys labeled with the fluorescent probe 3-(bromoacetyl)-7-(diethylamino)coumarin (PyBC, Py-24-45BC) have been investigated. Addition of $G_{t\alpha}GDP$ to PyBC produced approximately a 6-fold maximal increase in the probe fluorescence, while the fluorescence of Pγ-24-45BC was enhanced by 2.3-fold. The K_d 's for the $G_{t\alpha}$ GDP binding to PγBC and Pγ-24-45BC were 75 \pm 8 nM and 400 \pm 110 nM, respectively. The $G_{t\beta\gamma}$ subunits had no notable effect on the binding of $G_{t\alpha}GDP$ to $P\gamma BC$ or $P\gamma -24 -45BC$, suggesting that $P\gamma$ and $G_{t\beta\gamma}$ bind to $G_{t\alpha}GDP$ noncompetitively. The $G_{t\alpha\beta\gamma}$ interaction with the fluorescently labeled $P\gamma$ was effectively blocked in the light-activated rhodopsin (R*) $-G_{t\alpha\beta\gamma}$ complex. Furthermore, addition of excess Py or Py-24-45 prevented binding of $G_{t\alpha\beta\gamma}$ to R*, indicating that the R* and P γ binding surfaces on $G_{t\alpha\beta\gamma}$ may overlap. It is likely that R* has a binding site within the $\alpha 3 - \beta 5$ region of $G_{t\alpha}$, which is a proposed site of $G_{t\alpha}$ GDP binding to $P\gamma - 24 - 45$. Alternatively, R* may induce conformational changes of the $G_{t\alpha}$ $\alpha 3-\beta 5$ region such that the resulting structural changes alter the adjacent consensus sequence for the guanine ring binding of GDP/GTP(NKXD), and lead to a reduction in the affinity of G-protein for guanine nucleotides.

When visual receptor rhodopsin is activated by light, its chromophore, 11-cis-retinal, rapidly isomerizes into an alltrans-retinal. This isomerization is followed by the relaxation of the receptor through a number of transitional states. In the active Meta II conformation, rhodopsin (R*)1 binds tightly to the holo G-protein, transducin $(G_{t\alpha\beta\gamma})$, causing the nucleotide-binding pocket on $G_{t\alpha}$ to open and GDP to dissociate. The exchange of GDP for GTP is favored because GTP binding induces a conformational change of $G_{t\alpha}$ that leads to dissociation of $G_{t\alpha}GTP$ from R^* and the $G_{t\beta\gamma}$ subunits. In the absence of GTP, the complex R*- $G_{t\alpha\beta\gamma}$ is stable and protects R* from decaying into opsin and 11-trans-retinal. $G_{t\alpha}GTP$ activates cGMP phosphodiesterase (PDE) by relieving an inhibitory constraint imposed by two identical inhibitory subunits of PDE (P γ) on the enzyme $\alpha\beta$ catalytic subunits ($P\alpha\beta$). cGMP hydrolysis by active PDE results in closure of cGMP-gated channels in the plasma membrane and hyperpolarization of the cell [for a review, see Chabre and Deterre (1989), Hargrave et al. (1993), Yarfitz and Hurley (1994), and Stryer (1996)].

Evidence suggests that $G_{t\alpha}GTP$ binds mainly to the $P\gamma$ subunits complexed with $P\alpha\beta$ (Hurley & Stryer, 1982; Deterre et al., 1988; Fung & Griswold-Prenner, 1989; Wensel

& Stryer, 1990). Two major regions of P γ , a polycationic region (P γ -24-45) and the C-terminal region (P γ -63-76), have been implicated in the interaction with $G_{t\alpha}GTP$ (Lipkin et al., 1988; Artemyev et al., 1992; Brown, 1992; Takemoto et al., 1992; Skiba et al., 1995; Slepak et al., 1995). Significant progress has been made in the identification of $P\gamma$ -binding domains on transducin (Rarick et al., 1992; Artemyev et al., 1992, 1993; Faurobert et al., 1993; Cunnick et al., 1994; Erickson et al., 1995; Skiba et al., 1996; Liu et al., 1996). Recent studies have found that $G_{t\alpha}GDP$ can also interact with $P\gamma$, although the affinity of this interaction is significantly lower than that of the $G_{t\alpha}GTP-P\gamma$ complex (Otto-Bruc et al., 1993; Yamazaki et al., 1990; Artemyev et al., 1993; Skiba et al., 1995). This study probes the interactions of $G_{t\alpha}GDP$ or holo $G_{t\alpha\beta\gamma}$ with $P\gamma$, and investigates how $G_{t\alpha\beta\gamma}$ binding to R^* affects its interaction with Ργ.

EXPERIMENTAL PROCEDURES

Materials. GTP and GTP γ S were products of Boehringer Mannheim. Blue-Sepharose CL-6B was obtained from Pharmacia. 3-(Bromoacetyl)-7-(diethylamino)coumarin was purchased from Molecular Probes, Inc. All other chemicals were acquired from Sigma.

Preparation of ROS Membranes, $G_{t\alpha\beta\gamma}$, $G_{t\alpha}GTP\gamma S$, $G_{t\alpha}GDP$, and $G_{t\beta\gamma}$. Bovine ROS membranes were prepared by the method described in Papermaster and Dreyer (1974). Ureawashed ROS membranes were prepared according to Yamanaka et al. (1985) and were stored at -80 °C. Hydroxylamine-treated ROS membranes were prepared by incubating bleached urea-washed ROS membranes with 50 mM hydroxylamine in 20 mM HEPES buffer (pH 7.6), containing

[†] This work was supported by NEI Grant EY-10843.

^{*} Address correspondence to this author. Telephone: 319-335-7864. Fax: 319-335-7330. E-mail: Nikolai-Artemyev@UIOWA.EDU.

[®] Abstract published in *Advance ACS Abstracts*, April 1, 1997.

¹ Abbreviations: R*, photoexcited rhodopsin; $G_{t\alpha\beta\gamma}$, rod GTP-binding protein transducin; PDE, rod outer segment cGMP phosphodiesterase; Pα, Pβ, Pγ, subunits of PDE; PγBC and Pγ-24–45BC, Pγ and Pγ-24–45Cys labeled with 3-(bromoacetyl)-7-(diethylamino)coumarin; PγLY, Pγ labeled with the fluorescent probe lucifer yellow vinyl sulfone; GTPγS, guanosine 5'-O-(thiotriphosphate); HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HPLC, high-performance liquid chromatography.

100 mM NaCl and 4 mM MgCl₂ (buffer A), for 30 min at room temperature. The membranes were then centrifuged for 10 min at 20000g, and the pellet was rinsed twice with 1 mL of buffer A and resuspended in the same buffer. Transducin, $G_{t\alpha\beta\gamma}$, was extracted from ROS membranes using GTP as described in Stryer et al. (1983). The $G_{t\alpha}GTP\gamma S$ and $G_{t\beta\gamma}$ subunits were extracted from ROS membranes using GTP γS and purified by chromatography on Blue-Sepharose CL-6B by the procedure of Kleuss et al. (1987). $G_{t\alpha}GDP$ was prepared and purified according to protocols in Yamazaki et al. (1988). The purified proteins were stored in 40% glycerol at -20 °C.

Preparation of Py, PyBC, and Py-24-45BC. Recombinant Py subunit was expressed in E. coli and purified on a SP-Sepharose fast flow column and on a C-4 HPLC column (Microsorb-MW, Rainin) as described in Skiba et al. (1995). To obtain PγBC, a 2-fold molar excess of 3-(bromoacetyl)-7-(diethylamino)coumarin in N',N-dimethylformamide was added to 100 μ M P γ in buffer A (minus MgCl₂), and the mixture was incubated for 30 min at room temperature (23– 24 °C). The PyBC was then passed through a PD-10 column (Pharmacia) equilibrated with buffer A and purified by RP HPLC on a C-4 column Microsorb-MW (Rainin) using a 0-100% gradient of acetonitrile, 0.1% TFA. Using $\epsilon_{445} =$ 53 000 for BC, the molar ratio of BC to P γ was greater than 0.8 mol/mol. Pγ-24-45BC was prepared by labeling of peptide Pγ-24-45Cys and purified as described in Natochin and Artemyev (1996). A Py mutant, PyCys68→Ser (Artemyev et al., 1996), and peptide Py-24-45 that contains no cysteine were not derivatized with BC under similar conditions, suggesting the selectivity of the cysteine labeling.

Peptide Synthesis. Peptides $P\gamma$ -24–45 and $P\gamma$ -24–45Cys were synthesized by the solid-phase Merrifield method on an Applied Biosystems automated peptide synthesizer. The extra cysteine was added to the C-terminus of the $P\gamma$ -24–45 sequence as a site for the introduction of the environmentally sensitive fluorescent probe BC. The peptides were purified by RP HPLC on a preparative Aquapore Octyl column (25 × 1cm) (Applied Biosystems). The purity and chemical formula of each peptide were confirmed by fast-atom-bombardment mass spectrometry, and analytical reverse-phase HPLC.

Fluorescent Assays. Fluorescent assays were performed on a F-2000 fluorescence spectrophotometer (Hitachi) in 1 mL of buffer A at room temperature (23–24 °C). The fluorescence of P γ BC or P γ -24–45BC was monitored with excitation at 445 nm and emission at 495 nm. Concentrations of P γ BC and P γ -24–45BC were determined using ϵ_{445} = 53 000.

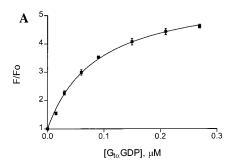
Binding of $G_{t\alpha\beta\gamma}$ to ROS Membranes. $G_{t\alpha\beta\gamma}$ (1 μM) and urea-washed ROS membranes containing 20 μM rhodopsin were mixed in 100 μL of buffer A. Where indicated, buffer A contained $P\gamma$ or $P\gamma$ -24–45. The mixture was then illuminated with a White light transilluminator lamp (Fisher) for 5 min at room temperature (23–24 °C). ROS membranes were centrifuged for 10 min at 20000g, and the pellets were rinsed with 300 μL of buffer A. Bound $G_{t\alpha\beta\gamma}$ was then extracted using 5 μM GTPγS and analyzed by SDS–PAGE.

Gel Filtration. Gel filtration of $G_{t\alpha\beta\gamma}$, $P\gamma$, $P\gamma$ -24–45, or a mixture of $G_{t\alpha\beta\gamma}$ with $P\gamma$ or $P\gamma$ -24–45 was carried out on a Superose 12HR (1.0 × 30 cm) column (Pharmacia) using a Bio-Rad 2800 HPLC system. Samples (200 μL) containing

 $G_{t\alpha\beta\gamma}$ (2 μ M) and/or P γ (3, 10 μ M) or P γ -24-45 (20, 50 μ M) were injected onto the column equilibrated with buffer A containing 1 mM β -mercaptoethanol and 0.005% polyoxyethylene ether W-1. Proteins were eluted at 0.4 mL/min. Fractions were collected and analyzed by SDS-PAGE.

Analytical Methods. Protein concentrations were determined by the method of Bradford (1976) using IgG as a standard or using calculated extinction coefficients at 280 nm. SDS-PAGE was performed by the method of Laemmli (1970) in 10-12% acrylamide gels. Rhodopsin concentrations were measured using the difference in absorbance at 500 nm between "dark" and bleached ROS preparations. Coomassie-stained gels were scanned using an HP ScanJet II CX/T scanner and analyzed using NIH Image software. A $K_{1/2}$ for the $G_{t\alpha}$ GDP-P γ interaction was calculated from the competition curve using eq 1 derived in Linden (1982):

$$K_{1/2} = \frac{IC_{50}}{1 + H_f/K_d + (R_T/K_d)[(K_d + H_f/2)/(K_d + H_f)]}$$
 (1)


where IC₅₀ is the concentration of P γ which reduces the relative fluorescence increase by 50%, $H_{\rm f}$ is the free P γ BC concentration in the absence of P γ , R_T is the total concentration of G_{t α}GDP, and $K_{\rm d}$ is the dissociation constant for the G_{t α}GDP-P γ BC complex.

Fitting of the experimental data was performed with nonlinear least-squares criteria using GraphPad Prizm Software.

RESULTS

Interaction of $G_{t\alpha}GDP$ with $P\gamma$. To study the interaction between $G_{t\alpha}GDP$ and $P\gamma$, the $P\gamma$ subunit has been labeled with the environmentally sensitive fluorescent probe 3-(bromoacetyl)-7-(diethylamino)coumarin at a single cysteine (Cys68). Previously, Py labeled with lucifer yellow vinyl sulfone (PyLY) has been employed to monitor the binding of G_{to} GTP γ S to P γ (Artemyev et al., 1992). However, we found that binding of $G_{t\alpha}GTP\gamma S$ to $P\gamma LY$ resulted in a maximal fluorescence increase of approximately 3-fold (Artemyev et al., 1992), while the maximal fluorescence increase due to $G_{t\alpha}GTP\gamma S$ binding to $P\gamma BC$ was almost 7-fold (not shown). The calculated affinity of the $G_{t\alpha}$ -GTP γ S-P γ BC interaction was around 4 nM. The K_d for this interaction is nearly 10-fold lower than the K_d for $G_{t\alpha}$ -GTP γ S binding to P γ LY(36 nM) (Artemyev et al., 1992). Moreover, the labeling of $P\gamma$ with LY appears to reduce its affinity for $G_{t\alpha}GTP\gamma S$. The K_d of $P\gamma$ binding to $G_{t\alpha}GTP\gamma S$ calculated from earlier competition experiments is 10 nM (Slepak et al., 1995). The elevated fluorescence increase coupled with the higher affinities lead us to employ $P\gamma BC$, especially in light of the weaker interaction between $G_{t\alpha}$ GDP and P γ .

The binding of $G_{t\alpha}GDP$ to $P\gamma BC$ as measured by the fluorescence increase of $P\gamma BC$ is shown in Figure 1A. The curve displays a single class of binding sites with a K_d of 75 \pm 8 nM and a maximal fluorescence enhancement $F/F_o = 5.8 \pm 0.2$. Unlabeled $P\gamma$ competed with $P\gamma BC$, resulting in a decrease in fluorescence (Figure 1B). A K_d of 110 nM for $P\gamma$ binding to $G_{t\alpha}GDP$ was calculated from the competition curve (Figure 1B). The peak of the fluorescence emission of $P\gamma BC$ ($\lambda = 498$ nm) shifted maximally to a

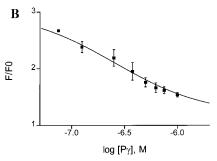


FIGURE 1: (A) Binding of $G_{t\alpha}GDP$ to $P\gamma BC$. The relative increase in fluorescence (F/F_o) of $P\gamma BC$ (25 nM) (excitation at 445 nm, emission at 495 nm) was determined after addition of increasing concentrations of $G_{t\alpha}GDP$. The binding curve ($K_d=75\pm 8$ nM, maximum $F/F_o=5.8\pm 0.2$) fits the data with r=0.99. (B) Competition between $P\gamma BC$ and $P\gamma$ for binding to $G_{t\alpha}GDP$. Fluorescence of $P\gamma BC$ (25 nM) in the presence of $G_{t\alpha}GDP$ (50 nM) was measured before and after addition of increasing concentrations of $P\gamma$. The fluorescent change (F/F_o) is plotted as a function of $P\gamma$ concentration. The competition curve ($IC_{50}=230$ nM) fits the data with r=0.96.

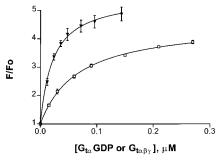


FIGURE 2: Binding of $G_{t\alpha\beta\gamma}$ to $P\gamma BC$. The relative increase in fluorescence (F/F_o) of $P\gamma BC$ (25 nM) in the presence of 0.5 μ M $G_{t\beta\gamma}$ was determined after addition of increasing concentrations of $G_{t\alpha}GDP$ (open squares). The relative increase in fluorescence (F/F_o) of $P\gamma BC$ (25 nM) was determined after addition of increasing concentrations of holo-transducin, $G_{t\alpha\beta\gamma}$ (filled triangles). The binding curves (squares: $K_d=64\pm 4$ nM, maximum $F/F_o=4.6\pm 0.1$; triangles: $K_d=28\pm 3$ nM, maximum $F/F_o=5.5\pm 0.2$) fit the data with r values of 0.99 and 0.98, respectively.

shorter wavelength (λ = 490 nm) when complexed with $G_{t\alpha}$ -GDP, indicative of a more hydrophobic environment for the fluorescent probe.

Interaction of $G_{r\alpha\beta\gamma}$ with $P\gamma$. Addition of $G_{t\beta\gamma}$ (up to 0.5 μ M final concentration) to $P\gamma$ BC did not change the $P\gamma$ BC fluorescence. The binding of $G_{t\alpha}$ GDP to $P\gamma$ BC in the presence of excess $G_{t\beta\gamma}$ is shown in Figure 2. The binding curve ($K_d = 64 \pm 4$ nM, maximal $F/F_o = 4.6 \pm 0.1$) is analogous to the binding curve in the absence of $G_{t\beta\gamma}$. Holotransducin interacted with $P\gamma$ BC with even higher affinity ($K_d = 28 \pm 3$ nM) and produced comparable maximal fluorescence enhancement of $P\gamma$ BC (maximal $F/F_o = 5.5 \pm 0.2$) (Figure 2). The somewhat higher affinity of the $G_{t\alpha\beta\gamma}-P\gamma$ BC interaction may reflect a greater stability of

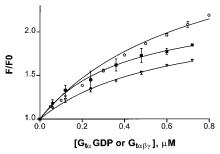


FIGURE 3: Interactions of $G_{t\alpha}GDP$ and $G_{t\alpha\beta\gamma}$ with $P\gamma$ -24–45BC. The relative increase in fluorescence (F/F_o) of $P\gamma$ -24–45BC (50 nM) alone (filled squares) or in the presence of $0.5~\mu M$ $G_{t\beta\gamma}$ (open triangles) was determined after addition of increasing concentrations of $G_{t\alpha}GDP$. The relative increase in fluorescence (F/F_o) of $P\gamma$ -24–45BC (50 nM) was determined after addition of increasing concentrations of holo-transducin, $G_{t\alpha\beta\gamma}$ (open circles). The binding curve characteristics are (squares) $K_d=400\pm110$ nM, maximum $F/F_o=2.3\pm0.2,\ r=0.96$; (triangles) $K_d=610\pm90$ nM, maximum $F/F_o=2.2\pm0.1,\ r=0.99$; (circles) $K_d=720\pm30$ nM, maximum $F/F_o=3.2\pm0.1,\ r=0.98$.

 $G_{t\alpha\beta\gamma}$ than $G_{t\alpha}GDP$ after protein purification. The data suggest that $G_{t\beta\gamma}$ and $P\gamma BC$ do not compete for binding to $G_{t\alpha}GDP$.

Interaction of $G_{t\alpha}GDP$ and $G_{t\alpha\beta\gamma}$ with $P\gamma$ -24–45. A synthetic peptide, $P\gamma$ -24–45Cys, was labeled with the BC probe and used to elucidate the interaction between the polycationic region of $P\gamma$ and $G_{t\alpha}GDP$ or $G_{t\alpha\beta\gamma}$. Figure 3 shows a single class of binding sites for the complex $G_{t\alpha}GDP - P\gamma$ -24–45BC with a K_d of 400 \pm 110 nM and maximal fluorescence enhancement $F/F_o = 2.3 \pm 0.2$. Similar results were obtained using $G_{t\alpha}GDP$ in the presence of excess $G_{t\beta\gamma}$ ($K_d = 610 \pm 90$ nM, $F/F_o = 2.2 \pm 0.1$) and holo-transducin ($K_d = 720 \pm 30$ nM, $F/F_o = 3.2 + 0.1$) (Figure 3). This indicates that $G_{t\beta\gamma}$ does not affect binding of $G_{t\alpha}GDP$ to $P\gamma$ -24–45.

Binding to R^* Blocks Transducin Interaction with PyBC. Next, the effects of $G_{t\alpha\beta\gamma}$ binding to R* on the interaction between $G_{t\alpha\beta\gamma}$ and $P\gamma BC$ were investigated. In these experiments, $G_{t\alpha\beta\gamma}$ was mixed with "dark" urea-washed ROS membranes that were depleted of active components of the visual transduction cascade except for rhodopsin. The rhodopsin to $G_{t\alpha\beta\gamma}$ molar ratio (25:1) was sufficient to bind almost all transducin added, with less than 10% of added $G_{t\alpha\beta\nu}$ remaining in the supernatant following centrifugation of the bleached ROS membranes. In control experiments, urea-washed ROS membranes were substituted with hydroxylamine treated ROS membranes. Addition of ureawashed ROS membranes containing 2 µM rhodopsin or an equivalent concentration of hydroxylamine-treated ROS membranes to PyBC did not change the PyBC fluorescence. After illumination to allow tight binding of $G_{t\alpha\beta\gamma}$ to R^* , the $G_{t\alpha\beta\gamma}$ -R* complexes were added to an assay buffer containing PyBC for the fluorescence measurements. The interaction between $G_{t\alpha\beta\gamma}$ and PyBC was blocked by binding of $G_{t\alpha\beta\gamma}$ to R*, as measured by the fluorescence decrease (Figure 4A). Addition of hydroxylamine-treated ROS, that did not contain R*, produced no decrease in the fluorescence of the $G_{t\alpha\beta\gamma}$ -P γ BC complex (Figure 4A). $G_{t\alpha\beta\gamma}$ retained lowaffinity binding to hydroxylamine-treated or "dark" ROS membranes under the conditions of the fluorescence assay. Approximately 20% and 25% of transducin were bound to hydroxylamine-treated and "dark" ROS membranes, respectively (Figure 4B). Presumably, this binding was due to the

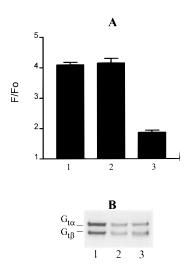


FIGURE 4: Effect of binding to R* on transducin interaction with PγBC. (A) Samples of $G_{t\alpha\beta\gamma}$ in 40 μ L of buffer A alone (1), $G_{t\alpha\beta\gamma}$ mixed with hydroxylamine-treated ROS membranes in 40 μ L of buffer A (2), and $G_{t\alpha\beta\gamma}$ mixed with urea-washed ROS membranes in 40 μ L of buffer A (3) were illuminated for 5 min and then added to 1 mL of buffer A containing $P\gamma BC$ for the fluorescence measurements. Final concentrations of rhodopsin, $G_{t\alpha\beta\gamma}$, and $P\gamma BC$ were 2 $\mu\mathrm{M}$, 80 nM, and 80 nM, respectively. The bars represent mean ±SE for three independent measurements. (B) SDSpolyacrylamide gel stained with Coomassie Blue. Binding of $G_{t\alpha\beta\gamma}$ to urea-washed ROS membranes (1), hydroxylamine-treated ROS membranes (2), and "dark" ROS membranes (3) was carried out as described in panel A, except "dark" ROS membranes were not illuminated. The ROS membranes were pelleted from 1 mL of buffer A, and the membrane-bound $G_{t\alpha\beta\gamma}$ was extracted using hypotonic buffer (buffer A without 100 mM NaCl) containing 5 μ M GTP γ S and analyzed by SDS-PAGE.

interaction of $G_{t\alpha\beta\gamma}$ with the disk membranes, and it had no effect on the $G_{t\alpha\beta\gamma}{-}P\gamma BC$ interaction (Figure 4A).

Py and Py-24-45 Block Binding of Transducin to R^* . An earlier study has shown that $P\gamma$ at high concentrations dissociated $G_{t\alpha\beta\gamma}$ into $G_{t\alpha}GDP$ and $G_{t\beta\gamma}$ and comigrated with $G_{t\alpha}GDP$ over a gel filtration column (Otto-Bruc et al., 1993). Therefore, concentrations of P γ and P γ -24-45 that may interfere with the $G_{t\alpha}$ - $G_{t\beta\gamma}$ interaction were determined first. The gel filtration experiments were performed essentially as described in Otto-Bruc et al. (1993). Gel filtration of $G_{t\alpha\beta\gamma}$ alone already showed slight dissociation of the holotransducin into $G_{t\alpha}GDP$ and $G_{t\beta\gamma}$ (Figure 5A,D). Addition of 3 μ M P γ had no notable effect on the elution profile of $G_{t\alpha\beta\gamma}$ (not shown). In the presence of 10 μ M P γ , the degree of $G_{t\alpha\beta\gamma}$ dissociation was increased (Figure 5B,D). However, only trace amounts of P γ were detected in fraction 4 (Figure 5B), suggesting that the affinity of the $G_{t\alpha}-G_{t\beta\gamma}$ interaction might be higher than that of the $G_{t\alpha}GDP(\text{or }G_{t\alpha\beta\gamma})-P\gamma$ interaction. It appears that $P\gamma$ has additional low affinity nonspecific site(s) on $G_{t\alpha}$. Binding of P γ to this (these) site-(s) may, competitively or noncompetitively, cause dissociation of $G_{t\alpha}$ and $G_{t\beta\gamma}$ subunits. P γ -24-45 (up to 50 μ M) had no effect on the elution profile of $G_{t\alpha\beta\gamma}$ on a Superose 12HR (Pharmacia) (not shown).

To test if binding of $G_{t\alpha\beta\gamma}$ to R^* could be blocked in the presence of excess $P\gamma$, $G_{t\alpha\beta\gamma}$ was mixed with increasing concentrations of $P\gamma$ prior to addition of "dark" urea-washed ROS membranes. Following illumination, the ROS membranes were pelleted by centrifugation, and the membrane-bound transducin was extracted using $GTP\gamma$ S and analyzed with SDS-PAGE. Figure 6 shows that addition of $P\gamma$

significantly reduced the amount of $G_{t\alpha\beta\gamma}$ bound to R^* . Approximately 55% of transducin was bound to bleached ROS membranes in the presence of 3 μ M P γ (Figure 6A,C). High concentrations of P γ (>6 μ M) disproportionally reduced amounts of $G_{t\beta\gamma}$ in $G_{t\alpha\beta\gamma}$ bound to ROS membranes (not shown). A peptide, P γ -24–45, had a lower affinity for $G_{t\alpha\beta\gamma}$ than P γ . Addition of this peptide effectively decreased the binding of $G_{t\alpha\beta\gamma}$ to R^* in a dose-dependent manner (Figure 6B,C). Approximately 25% of transducin was bound to bleached ROS membranes in the presence of 50 μ M P γ -24–45 (Figure 6B,C). Taking into account the relatively small size of P γ -24–45, the data would suggest that the peptide directly, rather than sterically, competes with R^* for binding to $G_{t\alpha\beta\gamma}$.

DISCUSSION

Recent studies have demonstrated that $G_{t\alpha}GDP$ interacts with $P\gamma$, though at a lower affinity than $G_{t\alpha}GTP$ (Otto-Bruc et al., 1993; Yamazaki et al., 1990; Artemyev et al., 1993; Skiba et al., 1995). The structural details and functional significance of the $G_{t\alpha}GDP-P\gamma$ interaction are not well understood. In an inactive GDP-bound conformation, G-protein α -subunits form tight complexes with the $G_{\beta\gamma}$ subunits. As heterotrimeric proteins, they interact with the corresponding ligand-activated seven transmembrane domain receptors. In this study, effects of $G_{t\beta\gamma}$ and R^* on the $G_{t\alpha}$ -GDP interaction with $P\gamma$ were investigated.

Results reported here suggest that the interaction between $G_{t\alpha}GDP$ and $P\gamma$ is not affected by $G_{t\beta\gamma}$. The affinity of the $G_{t\alpha}GDP-P\gamma$ interaction was similar to that when holotransducin or excess $G_{t\beta\gamma}$ was present. This finding does not support the model that the $G_{t\beta\gamma}$ subunits are necessary to release Py from the Py- $G_{t\alpha}$ GDP complex (Yamazaki et al.,1990). Lack of competition between P γ and $G_{t\beta\gamma}$ for binding to $G_{t\alpha}GDP$ is in agreement with studies on the $G_{t\alpha}$ P γ interaction (Artemyev et al., 1993; Skiba et al., 1996) in a view of the crystal structure of $G_{t\alpha\beta\gamma}$ (Lambright et al., 1996). An earlier study reported cross-linking of P γ -24– 45 to both $G_{t\alpha}GTP\gamma S$ and $G_{t\alpha}GDP$ (Artemyev et al., 1993). The cross-linking site on $G_{t\alpha}GTP\gamma S$ was localized to the $\alpha 4/$ β 6 loop, suggesting that P γ -24-45 has a binding site in the vicinity of this loop (Artemyev et al., 1993). Skiba et al. (1996) have demonstrated that $G_{t\alpha}GDP$ interacts with $P\gamma$ predominantly through the $\alpha 3/\beta 5$ region of $G_{t\alpha}$. Analysis of the $G_{t\alpha}$ effector interface using $G_{t\alpha}/G_{i\alpha}$ chimeras has indicated that a region of $G_{t\alpha}$ (aa 237–270), which contains the α 3 helix, α 3/ β 5 loop, and β 5 sheet, interacts with the N-terminal segment, $P\gamma$ -1-45, a region that contains the peptide sequence $P\gamma$ -24–45 (Skiba et al., 1996). The crystal structure of heterotrimeric transducin shows that the $\alpha 3/\beta 5$ region of $G_{t\alpha}$ in the $G_{t\alpha\beta\gamma}$ complex is readily accessible, especially for the relatively small P γ molecule. The α 3 helix and the $\alpha 3/\beta 5$ loop do not undergo conformational changes upon GTP hydrolysis (Lambright et al., 1994), and $G_{t\alpha}GDP$ subunits may remain loosely bound to P γ after reassociation with $G_{t\beta\gamma}$. However, the binding of $G_{t\beta\gamma}$ to $G_{t\alpha}GDP$ could disrupt the interaction of $G_{t\alpha}GDP$ with $P\gamma$ if the latter is bound to the large catalytic PDE subunits. $G_{t\alpha}GDP$ has been reported to activate PDE at very high concentrations ($K_a \sim$ 50 μ M), and the activation was reversed by the $G_{t\beta\gamma}$ subunits (Kutuzov & Pfister, 1994). This suggests that $G_{t\beta\gamma}$ sterically interferes with $G_{t\alpha}GDP$ binding to $P\gamma$ complexed with $P\alpha\beta$.

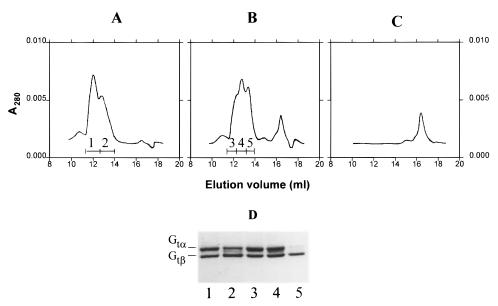


FIGURE 5: Effects of P γ on the gel filtration elution profile of $G_{t\alpha\beta\gamma}$. Gel filtration of 200 μ L samples of (A) 2 μ M $G_{t\alpha\beta\gamma}$ alone, (B) 2 μ M $G_{t\alpha\beta\gamma}$ in the presence of 10 μ M $P\gamma$, or (C) 10 μ M $P\gamma$ alone was performed as described under Experimental Procedures. (D) SDS—polyacrylamide gel stained with Coomassie Blue. (1–5) Fractions after the HPLC gel filtration as indicated in panels A and B.

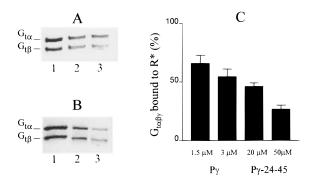


FIGURE 6: P γ and P γ -24–45 block $G_{t\alpha\beta\gamma}$ binding to R*. (A, B) SDS–polyacrylamide gels stained with Coomassie Blue. Binding of $G_{t\alpha\beta\gamma}$ to R* was performed as described under Experimental Procedures. $G_{t\alpha\beta\gamma}$ binding to R* (A, B; lane 1) in the presence of 1.5 μ M (A, lane 2) and 3 μ M (A, lane 3) P γ or 20 μ M (B, lane 2) and 50 μ M (B, lane 3) P γ -24–45. (C) Effects of P γ and P γ -24–45 on $G_{t\alpha\beta\gamma}$ binding to R*. The bars represent mean \pm SE for the scans of three gels.

Tryptophan 207 in $G_{t\alpha}$ has been implicated as a critical residue in effector binding (Faurobet et al., 1993). This residue is located within the switch II region that is covered by the β -propeller domain of $G_{t\beta}$ in $G_{t\alpha\beta\gamma}$ (Lambright et al., 1996). Therefore, it appears that Trp207 is not essential for the interaction between $G_{t\alpha}GDP$ and $P\gamma$. Binding of GTP to $G_{t\alpha}$ leads to dissociation of the $G_{t\beta\gamma}$ subunits and exposes the switch II region (Lambright et al., 1996). However, the GTP γ S-induced conformational change of $G_{t\alpha}$ brings the exposed side chains of the conserved residues Arg201, Arg204, and Trp207 into contacts with conserved residues in the α 3 helix. Trp207 is then buried between the side chains of Leu245 and Ile249 (Lambright et al., 1994). Possibly, a failure of the Trp207Phe mutant of $G_{t\alpha}$ to form important contacts with the $\alpha 3$ helix, rather than direct interaction of Trp207 with P γ , is responsible for the mutant inability to effectively bind and activate PDE (Faurobet et al., 1993).

Two lines of experimental evidence suggest that the R*-binding surface on $G_{t\alpha\beta\gamma}$ may overlap with the P γ -binding sites. First, binding to R* effectively blocked transducin

interaction with the fluorescently labeled Py. Second, addition of excess Py or Py-24-45 prevented binding of $G_{t\alpha\beta\gamma}$ to R*. However, the possibility that conformational changes occur on the Py-binding sites of $G_{t\alpha\beta\gamma}$ upon formation of the $R^*-G_{t\alpha\beta\gamma}$ complex cannot be excluded. Based on results of this study and the evidence that P γ and P γ -24-45 most probably interact with the $\alpha 3-\beta 5$ region on $G_{t\alpha}GDP$ (Cunnick et al., 1994; Skiba et al., 1996), it seems likely that R* either has a binding site or induces conformational change within the $\alpha 3-\beta 5$ region of $G_{t\alpha}$. This conclusion is consistent with the proposed surface for $G_{t\alpha\beta\gamma}$ interaction with R* (Lambright et al., 1996). The $\alpha 3-\beta 5$ domain is positioned on the same face of $G_{t\alpha\beta\gamma}$ as the myristoylated N-terminus of $G_{t\alpha}$, the farnesylated C-terminus of $G_{t\gamma}$, and the regions $G_{t\alpha}$ -311-328 and $G_{t\alpha}$ -340-350 that were previously implicated in the binding to R* (Hamm et al., 1988). In fact, from the crystal structure of $G_{t\alpha}GDP$ the shortest distance between the $\alpha 3-\beta 5$ region (Ser259) and the $G_{t\alpha}$ -340-350 region (Ile340) is only \sim 10 Å. Arg310 of $G_{t\alpha}$ is protected from tryptic cleavage upon $G_{t\alpha\beta\gamma}$ binding to R* (Mazzoni & Hamm, 1996) and is only ~10 Å away from the Thr257 in the $\alpha 3 - \beta 5$ region as determined using the RasMol program (v. 2.6-beta-2). Furthermore, regions of $G_{t\alpha}$, $G_{t\alpha}$ -310-329, and the $\alpha 4/\beta 6$ loop may represent additional sites for competitive binding of P γ and R*. $G_{t\alpha}$ -310-329 overlaps with the $G_{t\alpha}$ -293-314 domain that appears to participate in PDE activation by G_{ta}GTP (Rarick et al., 1992; Artemyev et al., 1992; Spickofsky et al., 1994; Skiba et al., 1996). In a recent study, Liu et al. (1996) have investigated the $G_{t\alpha}GTP\gamma S-P\gamma$ interaction using crosslinking of $G_{t\alpha}GTP\gamma S$ to $P\gamma$. Two out of three identified cross-linked residues (Met308 and Arg310) are situated within the $\alpha 4/\beta 6$ loop of $G_{t\alpha}$ (Liu et al., 1996). However, it is not clear if $G_{t\alpha}$ -293–314 is involved in $G_{t\alpha}GDP$ interaction with $P\gamma$.

The $\alpha 3-\beta 5$ region in heterotrimeric G-proteins is adjacent to the consensus sequence NKXD for the guanine ring binding of GDP or GTP. Binding of activated receptors to the $\alpha 3-\beta 5$ region of G_{α} subunits or a receptor-induced conformational change within this domain would explain the

drastically reduced affinity of G-proteins for GDP in the receptor/G-protein complex.

ACKNOWLEDGMENT

I thank A. Granovsky for technical assistance and Drs. H. Hamm, N. Skiba, and A. Gilchrist for valuable discussions.

REFERENCES

- Artemyev, N. O., Rarick, H. M., Mills, J. S., Skiba, N. P., & Hamm, H. E. (1992) J. Biol. Chem. 267, 2567.
- Artemyev, N. O., Mills, J. S., Thornburg, D. R., Knapp, D. R., Schey, K. L., & Hamm, H. E. (1993) *J. Biol. Chem.* 268, 23611.
- Artemyev, N. O., Natochin, M., Busman, M., Schey, K. L., & Hamm, H. E. (1996) *Proc. Natl. Acad. Sci. U.S.A.* 93, 5407.
- Bradford, M. M. (1976) Anal. Biochem. 72, 248.
- Brown, R. L. (1992) Biochemistry 31, 5918.
- Chabre, M., & Deterre, P. (1989) Eur. J. Biochem. 179, 255.
- Cunnick, J., Twamley, C., Udovichenko, I., Gonzalez, K., & Takemoto, D. J. (1994) *Biochem. J.* 297, 87.
- Deterre, P., Bigay, J., Forquet, F., Robert, M., & Chabre, M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 2424.
- Erickson, J. W., Mittal, R., & Cerione, R. A. (1995) *Biochemistry* 34, 8693.
- Faurobert, E., Otto-Bruc, E., Chardin, P., & Chabre, M. (1993) *EMBO J. 12*, 4191.
- Fung, B. K.-K., & Griswold-Prenner, I. (1989) Biochemistry 28, 3133
- Hamm, H. E., Deretic, D., Arendt, A., Hargrave, P. A., Koenig, B., & Hofmann, K. P. (1988) *Science* 241, 832.
- Hargrave, P. A., Hamm, H. E., & Hofmann, K. P. (1993) *BioEssays* 15, 43.
- Hurley, J. B., & Stryer, L. (1982) J. Biol. Chem. 257, 11094.
- Kleuss, C., Pallat, M., Brendel, S., Rosenthal, W., & Scultz, G. (1987) J. Chromatogr. 407, 281.
- Kutuzov, M., & Pfister, C. (1994) Eur. J. Biochem. 220, 963. Laemmli, U. K. (1970) Nature 227, 680.
- Lambright, D. G., Noel, J. P., Hamm, H. E., & Sigler, P. B. (1994) Nature 369, 621.

- Lambright, D. G., Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E., & Sigler, P. B. (1996) *Nature* 379, 311.
- Linden, J. (1982) J. Cyclic Nucleotide Res. 8, 163.
- Lipkin, B. M., Dumler, I. L., Muradov, K. G., Artemyev, N. O., & Etingof, R. N. (1988) FEBS Lett. 234, 287.
- Liu, Y., Arshavsky, V. Y., & Ruoho, A. E. (1996) J. Biol. Chem. 271, 26900.
- Mazzoni, M., & Hamm, H. E. (1996) *J. Biol. Chem.* 271, 30034. Natochin, M., & Artemyev, N. O. (1996) *J. Biol. Chem.* 271, 19964.
- Otto-Bruc, A., Antonny, B., Vuong, T. M., Chardin, P., & Chabre, M. (1993) *Biochemistry 32*, 8636.
- Papermaster, D. S., & Dreyer, W. J. (1974) *Biochemistry* 13, 2438.Rarick, H. M., Artemyev, N. O., & Hamm, H. E. (1992) *Science* 256, 1031.
- Skiba, N. P., Artemyev, N. O., & Hamm, H. E. (1995) J. Biol. Chem. 270, 13210.
- Skiba, N. P., Bae, H., & Hamm, H. E. (1996) J. Biol. Chem. 271,
- Slepak, V. Z., Artemyev, N. O., Yun Zhu, Dumke, C. L., Sabacan, L., Sondek, J., Hamm, H. E., Bownds, M. D., & Arshavsky, V. Y. (1995) J. Biol. Chem. 270, 14319.
- Spickofsky, N., Robichon, A., Danho, W., Fry, D., Greeley, D., Gravers, B., Madison, V., & Margolskee, R. F. (1994) Nat. Struct. Biol. 1, 771.
- Stryer, L. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 557.
- Stryer, L., Hurley, J. B., & Fung, B. K.-K. (1983) *Methods Enzymol.* 96, 617.
- Takemoto, D. J., Hurt, D., Oppert, B., & Cunnick, J. (1992) *Biochem. J.* 281, 637.
- Wensel, T. G., & Stryer, L. (1990) Biochemistry 29, 2155.
- Yamanaka, G., Eckstein, F., & Stryer, L. (1985) Biochemistry 24, 8094.
- Yamazaki, A., Tatsumi, M., & Bitensky, M. W. (1988) Methods Enzymol. 159, 702.
- Yamazaki, A., Hayashi, F., Tatsumi, M., Bitensky, M. W., & George, J. S. (1990) *J. Biol. Chem.* 265, 11539.
- Yarfitz, S., & Hurley, J. B. (1994) *J. Biol. Chem.* 269, 14329. BI963002Y